AUDITORÍA ENERGÉTICA DE ALUMBRADO PÚBLICO

CAUDETE

INFORME DE RESULTADOS

Abril 2016
ÍNDICE DE CONTENIDO

1. OBJETO ... 5
2. ANÁLISIS DE LAS INSTALACIONES ... 6
 2.1. ALCANCE FÍSICO ... 6
 2.2. DESEMPEÑO ENERGÉTICO ... 10
 2.3. SUMINISTROS ELÉCTRICOS ... 11
 2.4. ESTADO DE LOS CENTROS DE MANDO .. 16
 2.5. SISTEMAS DE ENCENDIDO ... 18
 2.6. LUMINARIAS INSTALADAS .. 19
 2.7. LÁMPARAS INSTALADAS .. 23
 2.8. SISTEMAS DE REGULACIÓN ... 26
 2.9. NIVELES DE ILUMINACIÓN ... 29
3. PROPUESTAS DE MEJORA ... 33
 3.1. ACTUACIONES EN CENTROS DE MANDO .. 34
 3.2. SUSTITUCIÓN DE LOS SISTEMAS DE ENCENDIDO E INSTALACIÓN DE UN SISTEMA DE TELEGESTIÓN .. 34
 3.3. SUSTITUCIÓN DE LUMINARIAS POR TECNOLOGÍA LED .. 35
 3.4. SUSTITUCIÓN DE LÁMPARAS POR OTRAS MÁS EFICIENTES .. 39
 3.5. INSTALACIÓN DE EQUIPOS ELECTRÓNICOS REGULABLES ... 40
 3.6. RESUMEN DE PROPUESTAS .. 42
 3.7. RESULTADOS GLOBALES ... 45
ÍNDICE DE TABLAS

Tabla 1. Dimensiones del alumbrado público ... 6
Tabla 2. Inventario de centros de mando ... 7
Tabla 3. Ratios característicos de la instalación de alumbrado público 10
Tabla 4. Datos de consumo y coste asignados a los suministros eléctricos 12
Tabla 5. Datos de consumo y coste facturados a los suministros eléctricos 14
Tabla 6. Características de los elementos de maniobra más comunes en alumbrado público 18
Tabla 7. Tipos de sistemas de encendido instalados .. 18
Tabla 8. Clasificación de zonas de protección contra la contaminación luminosa 19
Tabla 9. Tipos de luminarias instaladas .. 21
Tabla 10. Principales características de las lámparas habituales en alumbrado público 23
Tabla 11. Nuevas tecnologías de lámparas en alumbrado público 24
Tabla 12. Tipos de lámparas instaladas .. 24
Tabla 13. Ventajas e inconvenientes de los sistemas de regulación más habituales 26
Tabla 14. Tipos de sistemas de regulación instalados en alumbrado público 27
Tabla 15. Clasificación de las vías .. 29
Tabla 16. Situaciones de proyecto .. 30
Tabla 17. Requisitos fotométricos obligatorios para las diferentes clases de alumbrado 31
Tabla 18. Número de puntos de luz en cada tipo de vía .. 32
Tabla 19. Actuaciones a realizar en los centros de mando ... 34
Tabla 20. Características de los sistemas de telecontrol ... 35
Tabla 21. Tipos de luminarias a sustituir y propuesta equivalente LED 37
Tabla 22. Número de luminarias a sustituir y propuesta equivalente LED 38
Tabla 23. Equivalencia en la sustitución de lámparas ... 39
Tabla 24. Equivalencia en la sustitución de lámparas ... 41
Tabla 25. Resumen de propuestas en alumbrado público ... 43
Tabla 26. Resultados globales de la actuación en alumbrado público 45
Tabla 27. Ratios característicos de la instalación de alumbrado público 45
Tabla 28. Eficiencia energética del alumbrado público .. 46
ÍNDICE DE GRÁFICOS

Gráfico 1. Número de luminarias por centro de mando .. 9
Gráfico 2. Consumo eléctrico de alumbrado público por habitante .. 10
Gráfico 3. Consumo y coste energético de cada centro de mando .. 15
Gráfico 4. Deficiencias encontradas en los centros de mando ... 17
Gráfico 5. Tipos de luminarias instaladas ... 22
Gráfico 6. Tipos de lámparas instaladas .. 25
Gráfico 7. Comparación de la eficacia luminosa de distintas lámparas 39
Gráfico 8. Perfil tipo de regulación de los balastos electrónicos regulables programables 40

ÍNDICE DE ILUSTRACIONES

Ilustración 2. Tipo I .. 19
Ilustración 3. Tipo II .. 20
Ilustración 4. Tipo III ... 20
Ilustración 5. Tipo Artística ... 20
Ilustración 6. Tipo Peatonal .. 20
Ilustración 7. Tipo Globo ... 20
Ilustración 8. Tipo Proyector .. 20
Ilustración 9. Comparación de tecnología de descarga (izqda.) y tecnología LED (dcha.) Fuente: Philips .. 36
1. OBJETO

El consumo energético crece en paralelo al desarrollo económico de la sociedad, lo que unido a la tendencia alcista de los precios de la energía, hace necesaria la aplicación de medidas orientadas a la optimización de la demanda y el fomento del ahorro y la eficiencia energética. A este respecto, las instituciones municipales se encuentran ante el desafío de conseguir una gestión energética que les permita el crecimiento económico y el bienestar social, contribuyendo además a la sostenibilidad de recursos no renovables y a la preservación del medio natural.

Con el objeto de identificar las medidas complementarias de eficiencia y ahorro energético que contribuyan al desarrollo sostenible del municipio de Caudete, se ha llevado a cabo la auditoría energética de la instalación municipal de alumbrado público.

Esta auditoría energética se basa en un análisis de situación que nos permite conocer el modo de explotación, funcionamiento y prestaciones de unas instalaciones de alumbrado, el estado de sus componentes, sus consumos energéticos y sus correspondientes costes de operación.

Como objetivos fundamentales, el presente estudio pretende:

- Realizar una evaluación técnica del funcionamiento de cada instalación y un diagnóstico de las principales deficiencias, con observaciones relativas a las medidas correctoras que se deberían adoptar para la perfecta explotación de la misma
- Proponer las principales actuaciones con las que conseguir la máxima disminución del consumo energético de las instalaciones sin perjuicio de los parámetros de calidad y servicio de las mismas, de acuerdo a los criterios del ayuntamiento
- Valorar la viabilidad técnica y cuantificar en términos energéticos y económicos las propuestas de actuación

La auditoría incide, entre otros aspectos, sobre el cumplimiento de la normativa vigente, el control del encendido y apagado de los puntos de luz\(^1\), los sistemas de regulación del flujo luminoso, el rendimiento de las luminarias, la eficacia de las lámparas instaladas, así como los niveles de iluminación existentes en las áreas iluminadas. A partir de los resultados obtenidos y de las principales ineficiencias detectadas, se recomiendan las acciones idóneas para optimizar el coste económico asociado al consumo energético en función de su potencial de ahorro, la facilidad de implementación y el coste de ejecución.

\(^1\) Se entiende por puntos de luz el conjunto de elementos formados por la/s luminaria/s con su/s lámpara/s y equipos auxiliares en ella/s alojados, soporte y posicionamiento de ambos elementos que hacen que la emisión del flujo luminoso se dirija de una determinada manera.
2. ANÁLISIS DE LAS INSTALACIONES

2.1. ALCANCE FÍSICO

2.1.1. DIMENSIONES DEL ALUMBRADO

El alumbrado público de Caudete presenta las siguientes dimensiones:

Tabla 1. Dimensiones del alumbrado público

<table>
<thead>
<tr>
<th>DIMENSIONES DEL ALUMBRADO PÚBLICO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie del municipio</td>
<td>142</td>
<td>km²</td>
</tr>
<tr>
<td>Número de habitantes</td>
<td>10.294</td>
<td>hab</td>
</tr>
<tr>
<td>Número de centros de mando</td>
<td>42</td>
<td>CM</td>
</tr>
<tr>
<td>Número de luminarias</td>
<td>2.771</td>
<td>Lum</td>
</tr>
<tr>
<td>Luminarias por centro de mando</td>
<td>66,0</td>
<td>Lum/CM</td>
</tr>
</tbody>
</table>

2.1.2. CENTROS DE MANDO ANALIZADOS

Se han estudiado los centros de mando de alumbrado público indicados en la siguiente tabla:

Tabla 2. Inventario de centros de mando

<table>
<thead>
<tr>
<th>Centro de mando</th>
<th>Nombre</th>
<th>Número de luminarias</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-001</td>
<td>Mercado</td>
<td>35</td>
</tr>
<tr>
<td>CM-002</td>
<td>Paseo (Plaza Constitución)</td>
<td>63</td>
</tr>
<tr>
<td>CM-003</td>
<td>Plaza de la Iglesia</td>
<td>80</td>
</tr>
<tr>
<td>CM-004</td>
<td>Plaza Beato Alberto Marco</td>
<td>84</td>
</tr>
<tr>
<td>CM-005</td>
<td>Av. Juan Carlos I</td>
<td>72</td>
</tr>
<tr>
<td>CM-006</td>
<td>Huerta</td>
<td>121</td>
</tr>
<tr>
<td>CM-007</td>
<td>Travesía San Francisco</td>
<td>47</td>
</tr>
<tr>
<td>CM-008</td>
<td>San Jaime</td>
<td>22</td>
</tr>
<tr>
<td>CM-009</td>
<td>Pintor Pérez Gil</td>
<td>115</td>
</tr>
<tr>
<td>CM-010</td>
<td>Isaac Peral</td>
<td>43</td>
</tr>
<tr>
<td>CM-011</td>
<td>De la Nieve</td>
<td>80</td>
</tr>
<tr>
<td>CM-012</td>
<td>Alfonso El Sabio</td>
<td>52</td>
</tr>
<tr>
<td>CM-013</td>
<td>Av. Valencia</td>
<td>32</td>
</tr>
<tr>
<td>CM-014</td>
<td>Cuesta de La Ermita</td>
<td>92</td>
</tr>
<tr>
<td>CM-015</td>
<td>Calle San Pascual</td>
<td>47</td>
</tr>
<tr>
<td>CM-016</td>
<td>Calle Miguel Martínez</td>
<td>119</td>
</tr>
<tr>
<td>CM-017</td>
<td>Calle General Lassala</td>
<td>78</td>
</tr>
<tr>
<td>CM-018</td>
<td>Avda. De La Libertad (Centro Deportivo)</td>
<td>206</td>
</tr>
<tr>
<td>CM-019</td>
<td>Virgen De Gracia</td>
<td>59</td>
</tr>
<tr>
<td>CM-020</td>
<td>C/ Pérez Galdós</td>
<td>81</td>
</tr>
<tr>
<td>CM-021</td>
<td>C/ Echegaray</td>
<td>77</td>
</tr>
<tr>
<td>CM-022</td>
<td>Plaza Beato Miguel Díaz</td>
<td>51</td>
</tr>
<tr>
<td>CM-023</td>
<td>Plaza Nueva</td>
<td>107</td>
</tr>
<tr>
<td>CM-024</td>
<td>C/ Atleta Antonio Amorós</td>
<td>140</td>
</tr>
<tr>
<td>CM-025</td>
<td>Avenida Villena (Centro Salud)</td>
<td>112</td>
</tr>
<tr>
<td>CM-026</td>
<td>San José</td>
<td>34</td>
</tr>
<tr>
<td>CM-027</td>
<td>2ª Travesía Rambla</td>
<td>43</td>
</tr>
<tr>
<td>CM-028</td>
<td>C/ Jornetas Rep. 14</td>
<td>92</td>
</tr>
<tr>
<td>CM-029</td>
<td>Santa Barbara (Centro Mujer)</td>
<td>59</td>
</tr>
<tr>
<td>CM-030</td>
<td>Paraje (Centro Mujer)</td>
<td>1</td>
</tr>
<tr>
<td>CM-031</td>
<td>Vereda de Santa Ana, prox 22 Bajo</td>
<td>4</td>
</tr>
<tr>
<td>CM-032</td>
<td>Vereda de Santa Ana (Pol. QUINCE parcela 167-99)</td>
<td>4</td>
</tr>
<tr>
<td>CM-033</td>
<td>Vereda Sana Ana Parcela 2011-1</td>
<td>7</td>
</tr>
<tr>
<td>CM-034</td>
<td>Pol. Industrial Vial 1, prox 3 Bajo</td>
<td>33</td>
</tr>
<tr>
<td>CM-035</td>
<td>Carretera D12 Estación</td>
<td>54</td>
</tr>
<tr>
<td>CM-036</td>
<td>Carretera D12 Estación</td>
<td>38</td>
</tr>
</tbody>
</table>
En el gráfico 1 se puede observar la distribución de las luminarias en cada centro de mando de forma gráfica:
Gráfico 1. Número de luminarias por centro de mando.
2.2. DESEMPEÑO ENERGÉTICO

La instalación de alumbrado exterior de Caudete presenta los siguientes ratios característicos:

Tabla 3. Ratios característicos de la instalación de alumbrado público.

<table>
<thead>
<tr>
<th>RATIOS DEL ALUMBRADO EXTERIOR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia instalada por habitante</td>
<td>44</td>
<td>W/hab</td>
</tr>
<tr>
<td>Consumo de energía eléctrica por habitante</td>
<td>135</td>
<td>kWh/hab año</td>
</tr>
<tr>
<td>Relación consumo energético / potencia instalada</td>
<td>3.080</td>
<td>kWh/kW</td>
</tr>
<tr>
<td>Potencia por luminaria</td>
<td>163</td>
<td>W/PL</td>
</tr>
</tbody>
</table>

El consumo eléctrico en alumbrado público por habitante en Caudete es de 135 kWh/año, lo que se sitúa por encima del nivel medio existente en España, de 119 kWh/año. En el siguiente gráfico se compara este consumo con el de otros países de referencia:

Gráfico 2. Consumo eléctrico de alumbrado público por habitante.

2 Según estudio publicado por. Jaime Zamorano y Alejandro Sánchez de Miguel, grupo de Estudio de la Contaminación Luminica, Universidad Complutense de Madrid, 3 de marzo 2011.
Respecto a la potencia media por luminaria, Caudete presenta un valor de 163 W, que es un 1% inferior al valor medio existente en España de 165,1 W³. Hay que recordar que una baja potencia no siempre indica que haya una buena eficiencia, solo un menor consumo.

2.3. SUMINISTROS ELÉCTRICOS

2.3.1. CONTRATACIÓN Y FACTURACIÓN

La contratación de suministros de baja tensión, como son los de alumbrado público, se puede realizar actualmente bajo dos modalidades:

- Mercado regulado: Pueden acogerse a ella los suministros de menos de 10 kW de potencia contratada. Se caracteriza por tener un precio fijo que es revisado periódicamente
- Mercado libre: Obligatorio para todos los suministros de más de 15 kW, en caso contrario se aplica una penalización. Las características de contratación son negociables y dependen de la oferta realizada por la comercializadora eléctrica.

Debido a que no ha sido posible identificar completamente las facturas eléctricas de alumbrado público, se ha definido la tarifa de acceso que deberían tener en función del consumo calculado a partir de la potencia instalada, tiempo de funcionamiento y sistemas de regulación existentes en cada centro de mando.

Los tipos de tarifa de acceso existentes en la actualidad son:

- Potencia contratada menor a 10 kW: Mercado regulado (tarifa de último recurso) o libre con 2.0 A, con posibilidad de discriminación horaria en dos periodos, en cuyo caso se denomina 2.0 DHA.
- Potencia contratada entre 10 y 15 kW: Mercado libre (en caso de mercado regulado sufren una penalización) con tarifa 2.1 A, con posibilidad de discriminación horaria en dos periodos, en cuyo caso se denomina 2.1 DHA.
- Potencia contratada superior a 15 kW: Mercado libre (en caso de mercado regulado sufren una penalización) con tarifa 3.0 A, con tres periodos.

La estructura de facturación se basa en los siguientes conceptos:

- Término de potencia: Es un importe fijo por utilizar las redes eléctricas de distribución y disponer que la electricidad se suministre con una determinada potencia. Esta cantidad se abona siempre aunque no se haya realizado consumo alguno y es proporcional a la potencia contratada por el abonado.
- Término de energía (activa): Es un importe variable que depende de la energía consumida y del precio de referencia utilizado, que a su vez depende de la tarifa y mercado de contratación.

³ Inventario, consumo de energía y potencial de ahorro del alumbrado exterior municipal en España. IDAE, 2014
Complemento de energía reactiva: Es un importe variable que depende del factor de potencia medido, siempre que este sea inferior a 0,95.

Otros conceptos: alquiler de contadores cuando no sean propiedad del cliente, impuesto eléctrico e IVA.

El coste real de la factura de alumbrado público dependerá de estos cuatro componentes. Sin embargo, la aplicación de medidas de ahorro de energía sólo afectará directamente al consumo de energía activa. Por este motivo, en los cálculos utilizados en la auditoría se tiene en cuenta únicamente este coste para la obtención de los ahorros económicos y la rentabilidad de las soluciones propuestas.

El consumo energético de cada suministro eléctrico permite valorar aquellos centros de mando en los que la implantación de las propuestas de mejora tendrá un mayor impacto sobre el consumo energético global de la instalación. En este caso, como se ha comentado anteriormente, ya que no se ha conseguido identificar completamente los datos de facturación de los suministros, se ha asignado el consumo energético calculado a partir de la potencia instalada, tiempo de funcionamiento y sistemas de regulación existentes. Así mismo, el término de energía asignado corresponde a la tarifa que le correspondería según su potencia instalada:

- Menor a 10 kW: Tarifa 2.0 DHA en mercado regulado
- Entre 10 y 15 kW: Tarifa 2.1 DHA en mercado libre
- Mayor a 15 kW: Tarifa 3.0 A en mercado libre

Finalmente, el término de energía (€/kWh) es diferente en cada uno de los diferentes períodos tarifarios contratados. Por simplicidad, se utiliza un precio ponderado en función del consumo que se haya producido en P1, P2 y P3.

Con todas estas consideraciones, en la siguiente tabla se muestran los detalles del suministro para cada centro de mando, con el consumo asignado al alumbrado público y coste del término de energía:

<table>
<thead>
<tr>
<th>Centro de mando</th>
<th>CUPS</th>
<th>Tarifa</th>
<th>Consumo energía activa (kWh/año)</th>
<th>Coste energía activa (€/año)</th>
<th>Término de energía promedio (€/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-001</td>
<td>ES00210000000307791KW</td>
<td>2.1DHA</td>
<td>22.515</td>
<td>2.510</td>
<td>0,11149</td>
</tr>
<tr>
<td>CM-002</td>
<td>ES00210000000307142SC</td>
<td>3.0A</td>
<td>59.773</td>
<td>5.641</td>
<td>0,09437</td>
</tr>
<tr>
<td>CM-003</td>
<td>ES00210000000307333RG</td>
<td>3.0A</td>
<td>45.370</td>
<td>4.109</td>
<td>0,09056</td>
</tr>
<tr>
<td>CM-004</td>
<td>ES00210000000310995ED</td>
<td>2.1DHA</td>
<td>48.890</td>
<td>5.367</td>
<td>0,10978</td>
</tr>
<tr>
<td>CM-005</td>
<td>ES002100000012542305NB</td>
<td>2.0DHA</td>
<td>31.097</td>
<td>2.810</td>
<td>0,09036</td>
</tr>
<tr>
<td>CM-006</td>
<td>ES00210000001175728MW</td>
<td>2.0DHA</td>
<td>59.369</td>
<td>4.512</td>
<td>0,07601</td>
</tr>
<tr>
<td>CM-007</td>
<td>ES00210000001175561CL</td>
<td>2.0DHA</td>
<td>24.168</td>
<td>1.921</td>
<td>0,07949</td>
</tr>
<tr>
<td>CM-008</td>
<td>ES00210000000310112FT</td>
<td>2.0A</td>
<td>13.886</td>
<td>1.443</td>
<td>0,10389</td>
</tr>
<tr>
<td>CM-009</td>
<td>ES00210000000310574GW</td>
<td>3.0A</td>
<td>57.233</td>
<td>5.177</td>
<td>0,09045</td>
</tr>
<tr>
<td>CM-010</td>
<td>ES002100000011427967RT</td>
<td>2.1DHA</td>
<td>16.438</td>
<td>1.798</td>
<td>0,10941</td>
</tr>
<tr>
<td>Centro de mandos</td>
<td>CUPS</td>
<td>Tarifa</td>
<td>Consumo energía activa (kWh/año)</td>
<td>Coste energía activa (€/año)</td>
<td>Término energía promedio (€/kWh)</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>CM-011</td>
<td>ES00210000031289NG</td>
<td>2.0DHA</td>
<td>38.511</td>
<td>3.330</td>
<td>0,08647</td>
</tr>
<tr>
<td>CM-012</td>
<td>ES002100000031725PA</td>
<td>2.1DHA</td>
<td>22.983</td>
<td>2.486</td>
<td>0,10818</td>
</tr>
<tr>
<td>CM-013</td>
<td>ES0021000000307015XP</td>
<td>2.0DHA</td>
<td>15.830</td>
<td>1.000</td>
<td>0,06316</td>
</tr>
<tr>
<td>CM-014</td>
<td>ES0021000000311476CF</td>
<td>3.0A</td>
<td>45.390</td>
<td>4.077</td>
<td>0,08983</td>
</tr>
<tr>
<td>CM-015</td>
<td>ES002100001215273YC</td>
<td>2.1DHA</td>
<td>27.744</td>
<td>3.012</td>
<td>0,10858</td>
</tr>
<tr>
<td>CM-016</td>
<td>ES0021000000308953WZ</td>
<td>3.0A</td>
<td>61.249</td>
<td>5.462</td>
<td>0,08918</td>
</tr>
<tr>
<td>CM-017</td>
<td>ES0021000000308953WZ</td>
<td>3.0A</td>
<td>26.616</td>
<td>2.374</td>
<td>0,08918</td>
</tr>
<tr>
<td>CM-018</td>
<td>ES0021000000312952SB</td>
<td>3.0A</td>
<td>90.968</td>
<td>9.546</td>
<td>0,10493</td>
</tr>
<tr>
<td>CM-019</td>
<td>ES0021000000311476CF</td>
<td>3.0A</td>
<td>29.233</td>
<td>3.172</td>
<td>0,10850</td>
</tr>
<tr>
<td>CM-020</td>
<td>ES0021000000311476CF</td>
<td>3.0A</td>
<td>43.224</td>
<td>4.734</td>
<td>0,10953</td>
</tr>
<tr>
<td>CM-021</td>
<td>ES002100000031725PA</td>
<td>2.1DHA</td>
<td>37.900</td>
<td>4.191</td>
<td>0,11059</td>
</tr>
<tr>
<td>CM-022</td>
<td>ES002100000031725PA</td>
<td>2.1DHA</td>
<td>27.290</td>
<td>2.977</td>
<td>0,10908</td>
</tr>
<tr>
<td>CM-023</td>
<td>ES002100000031725PA</td>
<td>2.1DHA</td>
<td>58.653</td>
<td>4.177</td>
<td>0,07122</td>
</tr>
<tr>
<td>CM-024</td>
<td>ES0021000000307462YH</td>
<td>3.0A</td>
<td>102.984</td>
<td>8.971</td>
<td>0,08711</td>
</tr>
<tr>
<td>CM-025</td>
<td>ES0021000000307462YH</td>
<td>3.0A</td>
<td>32.282</td>
<td>2.796</td>
<td>0,08660</td>
</tr>
<tr>
<td>CM-026</td>
<td>S/N 1 CM-026</td>
<td>3.0A</td>
<td>16.531</td>
<td>1.362</td>
<td>0,08237</td>
</tr>
<tr>
<td>CM-027</td>
<td>S/N 2 CM-027</td>
<td>3.0A</td>
<td>21.109</td>
<td>1.739</td>
<td>0,08237</td>
</tr>
<tr>
<td>CM-028</td>
<td>ES0021000013739179RB</td>
<td>3.0A</td>
<td>49.051</td>
<td>4.238</td>
<td>0,08639</td>
</tr>
<tr>
<td>CM-029</td>
<td>ES0021000000309892CX</td>
<td>3.0A</td>
<td>37.981</td>
<td>3.316</td>
<td>0,08731</td>
</tr>
<tr>
<td>CM-030</td>
<td>ES0021000000309892CX</td>
<td>3.0A</td>
<td>77.9</td>
<td>79</td>
<td>0,10176</td>
</tr>
<tr>
<td>CM-031</td>
<td>ES0021000012634287DQ</td>
<td>2.0DHA</td>
<td>3.052</td>
<td>220</td>
<td>0,07194</td>
</tr>
<tr>
<td>CM-032</td>
<td>ES0021000017694636YC</td>
<td>2.0DHA</td>
<td>3.115</td>
<td>207</td>
<td>0,06636</td>
</tr>
<tr>
<td>CM-033</td>
<td>ES0021000016905568SJ</td>
<td>2.0A</td>
<td>5.230</td>
<td>539</td>
<td>0,10315</td>
</tr>
<tr>
<td>CM-034</td>
<td>ES0021000012079300YL</td>
<td>2.1DHA</td>
<td>18.492</td>
<td>1.956</td>
<td>0,10576</td>
</tr>
<tr>
<td>CM-035</td>
<td>ES0021000012079418BE</td>
<td>2.1DHA</td>
<td>30.260</td>
<td>3.081</td>
<td>0,10180</td>
</tr>
<tr>
<td>CM-036</td>
<td>ES0021000012079477ZN</td>
<td>2.1DHA</td>
<td>21.294</td>
<td>2.216</td>
<td>0,10409</td>
</tr>
<tr>
<td>CM-037</td>
<td>ES0021000012079492SG</td>
<td>2.1DHA</td>
<td>27.458</td>
<td>2.722</td>
<td>0,09913</td>
</tr>
<tr>
<td>CM-038</td>
<td>ES0021000016437145GP</td>
<td>2.1DHA</td>
<td>34.507</td>
<td>3.711</td>
<td>0,10755</td>
</tr>
<tr>
<td>CM-039</td>
<td>ES0021000016437145GP</td>
<td>2.0DHA</td>
<td>59.833</td>
<td>5.072</td>
<td>0,08476</td>
</tr>
<tr>
<td>CM-040</td>
<td>ES0021000015333148MB</td>
<td>2.0DHA</td>
<td>3.893</td>
<td>272</td>
<td>0,06976</td>
</tr>
<tr>
<td>CM-041</td>
<td>ES0021000016147121KZ</td>
<td>2.0A</td>
<td>2.241</td>
<td>231</td>
<td>0,10320</td>
</tr>
<tr>
<td>CM-042</td>
<td>ES0021000010756737GW</td>
<td>2.1DHA</td>
<td>19.836</td>
<td>2.109</td>
<td>0,10630</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>-</td>
<td>1.394.258</td>
<td>130.662</td>
<td>0,09371</td>
</tr>
</tbody>
</table>

A partir de estos resultados, se obtiene que el consumo energético del alumbrado público de Caudete es de 1.394.258 kWh, lo que supone un coste del término de energía de 130.662 € anualmente.

Hay que remarcar que este coste es sólo coste energético, no se está teniendo en cuenta los incrementos por potencia contratada, alquiler de equipos e impuesto eléctrico.
Tabla 5. Datos de consumo y coste facturados a los suministros eléctricos

<table>
<thead>
<tr>
<th>Tarifa asignada</th>
<th>Suministros</th>
<th>Consumo energía</th>
<th>Coste energía</th>
<th>Término energía promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Numero</td>
<td>Porcentaje</td>
<td>(kWh/año)</td>
<td>(%)</td>
</tr>
<tr>
<td>2.0A</td>
<td>4</td>
<td>10%</td>
<td>22.136</td>
<td>2%</td>
</tr>
<tr>
<td>2.0DHA</td>
<td>10</td>
<td>24%</td>
<td>297.519</td>
<td>21%</td>
</tr>
<tr>
<td>2.1DHA</td>
<td>15</td>
<td>36%</td>
<td>428.063</td>
<td>31%</td>
</tr>
<tr>
<td>3.0A</td>
<td>13</td>
<td>31%</td>
<td>646.539</td>
<td>46%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>42</td>
<td>100%</td>
<td>1.394.258</td>
<td>100%</td>
</tr>
</tbody>
</table>

A continuación se muestra de forma gráfica el consumo de energía activa y el término promedio por centro de mando:
Gráfico 3. Consumo y coste energético de cada centro de mando
2.4. ESTADO DE LOS CENTROS DE MANDO

El estado de los centros de mando y sus principales elementos se ha analizado a partir de las deficiencias existentes de acuerdo a la normativa vigente\(^4\). Esta normativa sólo es de obligado cumplimiento para las nuevas instalaciones o las modificaciones importantes de las existentes, por lo que la ejecución de propuestas de mejora en ahorro y eficiencia energética puede conllevar la adecuación de los centros de mando de la instalación afectada. En el apartado 3.1 se puede ver las actuaciones necesarias en los centros de mando.

ENVOLVENTE

Se han analizado las siguientes deficiencias relativas a la envolvente de cada centro de mando:

- Identificación de elementos: Los circuitos deben estar identificados y el cuadro rotulado
- Sistemas de cierre: Deben ser normalizados y los cierres estar en estado correcto
- Accesibilidad a elementos: Deben estar correctamente fijados y dispuestos en orden
- Conservación y limpieza: El estado exterior e interior debe garantizar el correcto funcionamiento y seguridad

CABLEADO

Se han analizado las siguientes deficiencias relativas a los cableados de cada centro de mando:

- Existencia de conductores desnudos o indebidamente aislados en el interior del centro de mando
- Conexiones por retorcimiento o arrollamiento: Deben utilizarse siempre bornes de conexión individuales o regletas
- Cableado mal ordenado o mal dispuesto
- Secciones: La sección mínima a emplear en los circuitos de alimentación al alumbrado será de 6 mm\(^2\) en caso de redes subterráneas y de 4 mm\(^2\) en caso de redes aéreas

PROTECCIONES ELÉCTRICAS Y CONTROL

Se han analizado las siguientes deficiencias relativas a los cableados de cada centro de mando:

- Protección diferencial y magnetotérmica en líneas de alumbrado: Cada línea debe contar con protección diferencial y magnetotérmica omnipolar incluyendo el conductor de neutro
- Puesta a tierra: Las partes metálicas del centro de mando irán conectadas mediante latiguillo de puesta a tierra
- Encendido con interruptor manual: De forma independiente, cuando el accionamiento del alumbrado se realice mediante interruptores horarios.

\(^4\) Reglamento Electrotécnico de Baja Tensión (REBT) y sus instrucciones técnicas complementarias, aprobado por el RD 842/2002.
Gráfico 4. Deficiencias encontradas en los centros de mando
2.5. SISTEMAS DE ENCENDIDO

En las instalaciones de alumbrado público podemos encontrar, principalmente, tres tipos de sistemas de encendido, también llamados elementos de maniobra. En la siguiente tabla se resumen las principales características, ventajas e inconvenientes de cada uno de los sistemas:

<table>
<thead>
<tr>
<th>ELEMENTO DE MANIOBRA</th>
<th>Reloj analógico</th>
<th>Célula fotoeléctrica</th>
<th>Astronómico / Telegestión</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINICIÓN</td>
<td>Consiste en un reloj corriente en el que se programa una hora para el encendido y apagado de las lámparas</td>
<td>Capta la luz solar en todo momento. Cuando ésta no alcanza un mínimo establecido, ordena encender las lámparas</td>
<td>Este elemento posee una base de datos con los horarios de orto y ocaso de todos los días del año para cada zona</td>
</tr>
<tr>
<td>VENTAJAS</td>
<td>Barato</td>
<td>Barato</td>
<td>Barato</td>
</tr>
<tr>
<td></td>
<td>Instalación sencilla</td>
<td>Eficiente</td>
<td>Instalación sencilla</td>
</tr>
<tr>
<td></td>
<td>Fiable</td>
<td></td>
<td>Fiable</td>
</tr>
<tr>
<td>INCONVENIENTES</td>
<td>Muy inexacto</td>
<td>La célula se encuentra instalada en lugares de difícil acceso y mantenimiento</td>
<td>Más caro que el resto de sistemas</td>
</tr>
<tr>
<td></td>
<td>Ineficiente, las lámparas están encendidas cuando no es necesario</td>
<td>Mal funcionamiento debido a problemas de suciedad y vandalismo</td>
<td>Se debe configurar en cada lugar determinado para conseguir el ajuste adecuado</td>
</tr>
<tr>
<td></td>
<td>Requiere ajustes manuales periódicos</td>
<td>Puede provocar encendidos intempestivos por fenómenos meteorológicos</td>
<td></td>
</tr>
</tbody>
</table>

En la siguiente tabla se muestran los sistemas de encendido existentes en los centros de mando de alumbrado público de Caudete:

<table>
<thead>
<tr>
<th>Sistema de encendido</th>
<th>Número de centros de mando</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reloj</td>
<td>5</td>
<td>12%</td>
</tr>
<tr>
<td>Astronómico</td>
<td>19</td>
<td>45%</td>
</tr>
<tr>
<td>Telegestión</td>
<td>12</td>
<td>29%</td>
</tr>
<tr>
<td>Fotocélula</td>
<td>6</td>
<td>14%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>42</td>
<td>100%</td>
</tr>
</tbody>
</table>

El 26% de los sistemas de encendido del alumbrado público de Caudete son ineficientes desde el punto de vista energético.
2.6. LUMINARIAS INSTALADAS

Las luminarias son aparatos que distribuyen, filtran o transforman la luz emitida por una o varias lámparas. Se compone de cuerpo o carcasa, bloque óptico y alojamiento de auxiliares, además de las juntas de hermeticidad, cierres, y otros elementos.

- **Rendimiento de una luminaria**: Es la relación existente entre el flujo luminoso que sale de ella y el flujo luminoso emitido por la lámpara. Representa el nivel de aprovechamiento de luz, es decir, a mayor rendimiento menor cantidad de luz es necesario generar, por lo que supone menor consumo energético para conseguir un mismo nivel de iluminación. Según la normativa vigente, las luminarias instaladas presentarán un rendimiento óptico mínimo del 65% para alumbrado funcional o del 55% para alumbrado ambiental.

- **Flujo hemisférico superior (FHS)**: Es el flujo luminoso emitido por el equipo de iluminación (luminaria y bombilla) por encima del plano horizontal. Las luminarias existentes en una zona particular, según la clasificación establecida en la normativa vigente, no deben presentar un FHS superior a los siguientes valores límite:

<table>
<thead>
<tr>
<th>Clasificación de zonas</th>
<th>Descripción</th>
<th>FHS instalado</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Áreas con entornos o paisajes oscuros</td>
<td>≤ 1%</td>
</tr>
<tr>
<td>E2</td>
<td>Áreas de brillo o luminosidad baja</td>
<td>≤ 5%</td>
</tr>
<tr>
<td>E3</td>
<td>Áreas de brillo o luminosidad media</td>
<td>≤ 15%</td>
</tr>
<tr>
<td>E4</td>
<td>Áreas de brillo o luminosidad alta</td>
<td>≤ 20%</td>
</tr>
</tbody>
</table>

A partir de estas características ópticas, las luminarias para instalaciones de alumbrado público se pueden clasificar desde el punto de vista de la eficiencia energética en los siguientes tipos:

- **Tipo I**: Se utilizan en el alumbrado de calzadas con tráfico de vehículos. Disponen de sistema óptico cerrado, fotometría regulable y cuerpo de inyección de aluminio. El cierre será de vidrio y tendrá una capacidad y grado de hermeticidad altos.

5 Real Decreto 1890/2008, de 14 de noviembre, por el que se aprueba el Reglamento de eficiencia energética en instalaciones de alumbrado exterior y sus Instrucciones técnicas complementarias EA-01 a EA-07.

- **Tipo II**: Se utilizan en el alumbrado de calzadas con tráfico de vehículos. Disponen de sistema óptico cerrado, fotometría regulable y cuerpo de inyección de aluminio. El cierre será vidrio, policarbonato o metacrilato, y tendrá una capacidad y grado de hermeticidad menores que las de Tipo I.

- **Tipo III**: Se utilizan en el alumbrado de calzadas con tráfico de vehículos. Será abierta con fotometría fija, cuerpo de chapa de aluminio o de plásticos técnicos y con equipo eléctrico incorporado.

- **Tipo Artística**: Corresponde a faroles y aparatos de carácter histórico de cuidada estética, instalados generalmente en cascos antiguos y zonas monumentales artísticas, así como aparatos de diseño de carácter vanguardista. La luminaria puede llevar incorporado un sistema óptico (reflector) que permite dirigir la luz adecuadamente y reducir la contaminación luminosa.

- **Tipo Peatonal**: Generalmente para caminos peatonales en urbanizaciones en manzana abierta, con fotometría fija o regulable, cuerpo de inyección o plásticos técnicos y cierre de vidrio o policarbonato, plano o curvo.

- **Tipo Globo**: Para uso en jardines, andadores y caminos peatonales, con fotometría fija y cierre esférico de metacrilato o policarbonato. Puede llevar incorporado un reflector en la semiesfera superior que limite la emisión de flujo luminoso hacia el cielo.

- **Tipo Proyector o Futurista**: Se utiliza generalmente en calles peatonales comerciales o de ocio modernas, de líneas estéticas adecuadas. También se utilizan para la iluminación por proyección de zonas monumentales artísticas.
En la siguiente tabla se muestra las unidades, y porcentaje sobre el total, de las luminarias instaladas en el alumbrado público de Caudete, según los tipos anteriormente.

Tabla 9. Tipos de luminarias instaladas

<table>
<thead>
<tr>
<th>Tipo de luminaria</th>
<th>Unidades</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viaria con cierre vidrio plano (tipo I)</td>
<td>846</td>
<td>30,5%</td>
</tr>
<tr>
<td>Viaria cierre policarbonato-metacrilato (tipo II)</td>
<td>937</td>
<td>33,8%</td>
</tr>
<tr>
<td>Viaria sin cierre (tipo III)</td>
<td>223</td>
<td>8,0%</td>
</tr>
<tr>
<td>Artística sin reflector</td>
<td>1</td>
<td>0,0%</td>
</tr>
<tr>
<td>Artística sin reflector tipo Villa</td>
<td>104</td>
<td>3,8%</td>
</tr>
<tr>
<td>Globo sin reflector</td>
<td>141</td>
<td>5,1%</td>
</tr>
<tr>
<td>Peatonal cierre plano</td>
<td>28</td>
<td>1,0%</td>
</tr>
<tr>
<td>Peatonal cierre curvo</td>
<td>4</td>
<td>0,1%</td>
</tr>
<tr>
<td>Peatonal cono invertido</td>
<td>92</td>
<td>3,3%</td>
</tr>
<tr>
<td>Peatonal cilíndrica</td>
<td>42</td>
<td>1,5%</td>
</tr>
<tr>
<td>Proyector</td>
<td>256</td>
<td>9,2%</td>
</tr>
<tr>
<td>Artística con reflector tipo Fernandina</td>
<td>5</td>
<td>0,2%</td>
</tr>
<tr>
<td>Artística sin reflector tipo Fernandina</td>
<td>48</td>
<td>1,7%</td>
</tr>
<tr>
<td>Empotrada en suelo</td>
<td>44</td>
<td>1,6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.771</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Se han identificado 14 modelos o tipos de luminarias. **Al menos el 23,5% de las luminarias instaladas en Caudete se consideran ineficientes desde el punto de vista del rendimiento óptico según la normativa vigente.** Del 76,5% restante, en algunos casos además existen en el mercado luminarias de mayor rendimiento (en concreto las de tecnología LED), cuya aplicación se estudiará en las propuestas de mejora.
Gráfico 5. Tipos de luminarias instaladas
2.7. LÁMPARAS INSTALADAS

Las lámparas son los dispositivos en los que se produce la luz. Las lámparas utilizadas en alumbrado público deben caracterizarse por ciertas cualidades que vienen impuestas por las propias exigencias específicas de funcionamiento. Las dos características esenciales que deben reunir las lámparas son las siguientes:

- **Eficacia luminosa (lúmenes por vatio):** una eficacia luminosa elevada disminuye a la vez los costes de instalación (potencia instalada) y los gastos de explotación o funcionamiento (energía consumida). Según la normativa vigente, las lámparas utilizadas en instalaciones de alumbrado exterior tendrán una eficacia luminosa superior a 65 lm/W para alumbrados vial, específico y ornamental.

- **Duración de la vida económica (horas):** definida como la duración de vida óptima desde el punto de vista de su coste de funcionamiento (el precio más bajo del lumen-hora). Esta depende de un cierto número de factores técnicos tales como la duración real de las lámparas en las condiciones de utilización y de instalación, y el flujo luminoso de la lámpara y su evolución en el transcurso del tiempo.

En la actualidad hay tres tecnologías mayoritarias de alumbrado público: vapor de mercurio, vapor de sodio y halogenuros metálicos. A continuación se presentan las principales características de cada una:

<table>
<thead>
<tr>
<th>Tabla 10. Principales características de las lámparas habituales en alumbrado público</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lámparas de vapor de mercurio</td>
</tr>
<tr>
<td>- Las lámparas de vapor de mercurio consisten en un tubo de descarga de cuarzo relleno de vapor de mercurio, el cual tiene dos electrodos principales y uno auxiliar para facilitar el arranque</td>
</tr>
<tr>
<td>- La luz que emiten es de color blanco</td>
</tr>
<tr>
<td>- Su eficacia y vida útil son bajas (10.000 h)</td>
</tr>
</tbody>
</table>

| **Lámparas de halogenuros metálicos convencionales** |
| - Son lámparas de vapor de mercurio “dopadas” con otros compuestos |
| - Estas lámparas mejoran la capacidad de reproducir el color además de aumentar la eficacia |
| - Estas lámparas no se pueden regular por lo que son incompatibles con sistemas de ahorro como los reguladores de tensión |
| - Presentan cambios de color conforme aumenta las horas de funcionamiento |

| **Lámparas de vapor de sodio (de alta presión)** |
| - En estas lámparas el tubo de descarga es de cerámica translúcida con el fin de soportar la alta corrosión del sodio y las altas temperaturas |
| - Su eficacia es alta y su vida útil también (23.000 h) |
| - La radiación es prácticamente monocromática, por lo que el color de la luz que producen es amarillo brillante |

Aunque estas tres tecnologías son las de uso mayoritario en el alumbrado público de España, durante los últimos años se han desarrollado nuevas tecnologías cada vez más populares e importantes:
Tabla 11. Nuevas tecnologías de lámparas en alumbrado público

| Lámparas de halogenuros metálicos (quemador cerámico) | • Combina las calidad de las lámparas de halogenuros metálicos con la eficacia y estabilidad de las de vapor de sodio de alta presión
• El tubo de descarga cerámico permite mayor eficacia y vida útil, mientras que se mantiene la reproducción cromática con mayor estabilidad |
| Lámparas de inducción magnética | • Utilizan el principio de las lámparas fluorescentes pero sustituyen los electrodos por un campo magnético
• Emiten luz blanca de alta calidad y permiten amplio rango de regulación
• Su principal característica es la larga vida, limitada sólo por los componentes electrónicos
• Requiere la renovación completa del sistema lámpara-luminaria-equipo |
| Tecnología LED | • Son diodos sólidos emisores de luz, por lo presentan muy alta robustez y vida útil
• Su eficacia es alta, y continúa en aumento
• Emiten luz blanca de alta calidad y permiten amplio rango de regulación
• La iluminación es más focalizada lo que supone un mayor rendimiento óptico, aunque debe cuidarse el deslumbramiento
• Requiere el diseño específico del sistema lámpara-luminaria-equipo, para asegurar una adecuada gestión térmica
• Bajo condiciones adecuadas, su vida útil es muy alta |

En la siguiente tabla se muestra las unidades, y porcentaje sobre el total, de lámparas instaladas en el alumbrado público de Caudete.

Tabla 12. Tipos de lámparas instaladas

<table>
<thead>
<tr>
<th>Tipo de lámpara</th>
<th>Unidades</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescente compacta integrada</td>
<td>12</td>
<td>0,4%</td>
</tr>
<tr>
<td>Halogenuro metálico quemador cerámico</td>
<td>915</td>
<td>33,0%</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar</td>
<td>1.311</td>
<td>47,3%</td>
</tr>
<tr>
<td>Vapor mercurio</td>
<td>501</td>
<td>18,1%</td>
</tr>
<tr>
<td>LED</td>
<td>24</td>
<td>0,9%</td>
</tr>
<tr>
<td>Incandescente tipo PAR</td>
<td>8</td>
<td>0,3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.771</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

En la siguiente página se muestra la distribución de luminarias existentes de forma gráfica.
Gráfico 6. Tipos de lámparas instaladas
2.8. SISTEMAS DE REGULACIÓN

El nivel de iluminación necesario en una vía no es el mismo a las 10 de la noche que a las 3 de la mañana, ya que el uso que se da a la vía no es el mismo. La normativa vigente obliga a reducir el nivel de iluminación a partir de una hora determinada de la noche para reducir el consumo energético en todas las instalaciones con una potencia instalada superior a 5 kW. La reducción del nivel de iluminación no debe ser superior al 50% del nivel máximo. Hay diversas formas de conseguir esta reducción del nivel de iluminación:

- **Apagado alternativo de puntos de luz:** No es un sistema de regulación sino de apagado. Consiste en repartir los puntos de luz de un centro de mando en varias fases o circuitos de forma alterna en cada calle. De este modo, a una determinada hora de la noche se programa que uno de los circuitos o fases se apague.

- **Balasto electromagnético de doble nivel de potencia en cada luminaria.** Pueden recibir la orden de conmutación a nivel reducido a través de un hilo de mando, o disponer de un temporizador en el propio equipo que se encarga de realizar la conmutación según un horario pre-programado de fábrica, en este caso no requiere de línea auxiliar externa.

- **Estabilizador-reductor de tensión en cabecera**

- **Equipo electrónico regulable en cada luminaria.** Al igual que los electromagnéticos de doble nivel, la regulación se puede ordenar a través de una línea de mando o mediante temporizador interno. Los equipos más modernos incluso permiten compatibilizarlos en instalaciones donde existe un regulador en cabecera, al entender la disminución de tensión como la señal de conmutación del nivel reducido.

A continuación se presentan las principales ventajas e inconvenientes de cada uno de los sistemas de regulación:

| Tabla 13. Ventajas e inconvenientes de los sistemas de regulación más habituales |
|---------------------------------|---------------------------------|---------------------------------|
| **SISTEMA DE REGULACIÓN** | **VENTAJAS** | **INCONVENIENTES** |
| Apagado alternativo de puntos de luz | • Es barato y no precisa de instalación de equipos especiales en lámparas ni cabecera
• Simplicidad en el uso
• Si se estropea un equipo, no afecta al resto de la línea, circuito o cuadro | • El nivel de iluminación proporcionado al apagar un circuito no es el más apropiado, al generarse claroscuros y quedar zonas con iluminación pobre
• Es más caro tender dos circuitos cubriendo una misma zona y alternando puntos de luz que tender cada circuito por dos zonas independientes |
| Doble nivel | • La variación del flujo luminoso se logra por la regulación de la corriente de la lámpara sin alterar la tensión aplicada. Este sistema es el único que garantiza una larga vida de las lámparas.
• No existen problemas de pérdidas de tensión en las líneas
• Si se estropea un equipo, no afecta al resto de la línea, circuito o cuadro | • Se debe instalar un equipo en cada lámpara, con los consecuentes costes de instalación
• Las posibilidades de regulación son limitadas (nivel máximo o reducido)
• En el caso del equipo regulado mediante línea de mando, el tendido de la línea encarece la instalación |
<table>
<thead>
<tr>
<th>SISTEMA DE REGULACIÓN</th>
<th>VENTAJAS</th>
<th>INCONVENIENTES</th>
</tr>
</thead>
</table>
| **Reducción de tensión en cabecera** | • Es un equipo relativamente fácil y rápido de instalar
• La estabilización de la tensión actúa durante todo el período de encendido del alumbrado, aunque no se esté reduciendo la tensión, protegiendo toda la instalación.
• Sólo se necesita un equipo por centro de mando | • La reducción de tensión disminuye la vida útil de la lámpara, ya que no puede sostener el incremento en la tensión de arco que se produce a medida que envejece la lámpara
• Tienen una capacidad limitada, por lo que ser insuficiente en caso de ampliaciones de puntos de luz
• Algunas lámparas que aún funcionan pueden dejar de lucir al disminuir la tensión
• Si el circuito es largo, las lámparas de final de línea no se encenderán
• No permiten discriminar por tipo de vía
• Las lámparas del tipo halogenuros metálicos de cuarzo no son compatibles con este aparato |
| **Balastos electrónicos regulables** | • Se puede regular la iluminación de cada lámpara individualmente a un distinto nivel
• No existen problemas de pérdidas de tensión en las líneas
• Si se estropea un equipo, no afecta al resto de la línea, circuito o cuadro
• Permiten regulación en dos o más niveles
• Corrigen el factor de potencia de la instalación | • Se debe instalar un equipo en cada luminaria, con los consecuentes costes de instalación
• En el caso del equipo regulado mediante línea de mando, el tendido de la línea encarece la instalación
• En caso de equipos temporizados, los horarios y niveles de la regulación son fijos |

En la siguiente tabla se muestran los diferentes sistemas de regulación que actúan sobre los puntos de luz del alumbrado público de Caudete.

Tabla 14. Tipos de sistemas de regulación instalados en alumbrado público.

<table>
<thead>
<tr>
<th>Tipo de equipo auxiliar</th>
<th>Unidades</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactancia electromagnética sin regulación</td>
<td>2.747</td>
<td>99,1%</td>
</tr>
<tr>
<td>Equipo electrónico no regulable</td>
<td>24</td>
<td>0,9%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.771</td>
<td>100,0%</td>
</tr>
</tbody>
</table>
Gráfico 5. Tipos de sistemas de regulación

Número de luminarias

- Reactancia electromagnética sin regulación: 2,747
- Equipo electrónico no regulable: 24
2.9. NIVELES DE ILUMINACIÓN

En alumbrado público, la iluminancia se utiliza como uno de los principales criterios para establecer el nivel de iluminación que debe existir en las vías a iluminar. La iluminancia representa la cantidad de luz emitida (lúmenes) sobre una superficie (m²). Por tanto, a mayor flujo luminoso o menor superficie, mayor será la iluminancia.

El nivel de iluminación será diferente en función, principalmente, del tipo de vía que se considere. Uno de los criterios para clasificar los tipos de vías existentes es la velocidad del tráfico rodado, aunque también se tiene en cuenta el tipo de usuario.

Tabla 15. Clasificación de las vías

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Tipo de vía</th>
<th>Velocidad del tráfico (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>De alta velocidad</td>
<td>$v > 60$</td>
</tr>
<tr>
<td>B</td>
<td>De moderada velocidad</td>
<td>$30 < v < 60$</td>
</tr>
<tr>
<td>C</td>
<td>Carriles bici</td>
<td>--</td>
</tr>
<tr>
<td>D</td>
<td>De baja velocidad</td>
<td>$5 < v < 30$</td>
</tr>
<tr>
<td>E</td>
<td>Vías peatonales</td>
<td>$v < 5$</td>
</tr>
</tbody>
</table>

No obstante, el criterio más utilizado es el referente al uso de la vía. De tal manera que los tipos definidos se dividen en subgrupos (denominados “situación de proyecto”) teniendo en cuenta las características de la vía (calzadas separadas con cruces, de doble sentido, con aparcamientos, etc.), la intensidad del tráfico en las horas nocturnas de máxima utilización, o la complejidad del trazado. A partir de estos parámetros se obtiene la clase de alumbrado que debe tener cada tipo de vía.

En la siguiente tabla se muestran las diferentes situaciones de proyecto definidas en la legislación vigente\(^7\). Para cada una de ellas, se aplican una o varias clases de alumbrado, definidas por unos parámetros lúminicos. Cuando para una determinada situación de proyecto e intensidad de tráfico puedan seleccionarse distintas clases de alumbrado, se elegirá la clase teniendo en cuenta la complejidad del trazado, el control de tráfico, la separación de los distintos tipos de usuarios y otros parámetros específicos.

\(^7\) Real Decreto 1890/2008, por el que se aprueba el Reglamento de Eficiencia Energética en Instalaciones de Alumbrado Exterior (REEIAE) y sus Instrucciones Técnicas Complementarias.
<table>
<thead>
<tr>
<th>Situación de proyecto</th>
<th>Tipo de vía</th>
<th>Clase de alumbrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Carreteras de calzadas separadas con cruces a distinto nivel y accesos controlados (autopistas y autovías).</td>
<td>ME1</td>
</tr>
<tr>
<td></td>
<td>Intensidad de tráfico</td>
<td>ME2</td>
</tr>
<tr>
<td></td>
<td>Alta (IMD) ≥ 25.000...</td>
<td>ME3a</td>
</tr>
<tr>
<td></td>
<td>Media (IMD) ≥ 15.000 y < 25.000...</td>
<td>ME2</td>
</tr>
<tr>
<td></td>
<td>Baja (IMD) < 15.000...</td>
<td>ME1</td>
</tr>
<tr>
<td></td>
<td>Carreteras de calzada única con doble sentido de circulación y accesos limitados (vías rápidas).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intensidad de tráfico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta (IMD) ≥ 15.000...</td>
<td>ME1</td>
</tr>
<tr>
<td></td>
<td>Media y baja (IMD) < 15.000...</td>
<td>ME2</td>
</tr>
<tr>
<td>A2</td>
<td>Carreteras interurbanas sin separación de aceras o carriles bicicletas</td>
<td>ME1</td>
</tr>
<tr>
<td></td>
<td>Carreteras locales en zonas rurales sin vía de servicio.</td>
<td>ME2</td>
</tr>
<tr>
<td></td>
<td>Intensidad de tráfico</td>
<td>ME3a</td>
</tr>
<tr>
<td></td>
<td>IMD ≥ 7.000...</td>
<td>ME4a</td>
</tr>
<tr>
<td></td>
<td>IMD < 7.000...</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Vías colectoras y rondas de circunvalación.</td>
<td>ME1</td>
</tr>
<tr>
<td></td>
<td>Carreteras interurbanas con accesos no restringidos.</td>
<td>ME2</td>
</tr>
<tr>
<td></td>
<td>Vías urbanas de tráfico importante, rápidas radiales y de distribución urbana a distritos. Vías principales de la ciudad y travesía de poblaciones.</td>
<td>ME3b</td>
</tr>
<tr>
<td></td>
<td>Intensidad de tráfico y complejidad del trazado de la carretera</td>
<td>ME4a</td>
</tr>
<tr>
<td></td>
<td>IMD ≥ 25.000...</td>
<td>ME4b</td>
</tr>
<tr>
<td></td>
<td>IMD ≥ 15.000 y < 25.000...</td>
<td>ME5</td>
</tr>
<tr>
<td></td>
<td>IMD ≥ 7.000 y < 15.000...</td>
<td>ME6</td>
</tr>
<tr>
<td></td>
<td>IMD < 7.000...</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Vías urbanas secundarias de conexión a urbanas de tráfico importante.</td>
<td>ME2</td>
</tr>
<tr>
<td></td>
<td>Vías distribuidoras locales y accesos a zonas residenciales y fincas.</td>
<td>ME3c</td>
</tr>
<tr>
<td></td>
<td>Intensidad de tráfico</td>
<td>ME4b</td>
</tr>
<tr>
<td></td>
<td>IMD ≥ 7.000...</td>
<td>ME5</td>
</tr>
<tr>
<td></td>
<td>IMD < 7.000...</td>
<td>ME6</td>
</tr>
<tr>
<td>B2</td>
<td>Carreteras locales en áreas rurales.</td>
<td>ME2</td>
</tr>
<tr>
<td></td>
<td>Intensidad de tráfico y complejidad del trazado de la carretera</td>
<td>ME3b</td>
</tr>
<tr>
<td></td>
<td>IMD ≥ 7.000...</td>
<td>ME4b</td>
</tr>
<tr>
<td></td>
<td>IMD < 7.000...</td>
<td>ME5</td>
</tr>
<tr>
<td>C1</td>
<td>Carriles bici independientes a lo largo de la calzada, entre ciudades en área abierta y de unión de zonas urbanas.</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Flujo de tráfico de ciclistas</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td>Alto...</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td>Normal...</td>
<td>S4</td>
</tr>
<tr>
<td>D1-D2</td>
<td>Áreas de aparcamiento en autopistas y autovías. Aparcamientos en general. Estaciones de autobuses.</td>
<td>CE1A</td>
</tr>
<tr>
<td></td>
<td>Flujo de tráfico de peatones</td>
<td>CE2</td>
</tr>
<tr>
<td></td>
<td>Alto...</td>
<td>CE3</td>
</tr>
<tr>
<td></td>
<td>Normal...</td>
<td>CE4</td>
</tr>
<tr>
<td>D3-D4</td>
<td>Calles residenciales suburbanas con aceras para peatones a lo largo de la calzada. Zonas de velocidad muy limitada.</td>
<td>CE2</td>
</tr>
<tr>
<td></td>
<td>Flujo de tráfico de peatones y ciclistas</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Alto...</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td>Normal...</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S4</td>
</tr>
<tr>
<td>E1</td>
<td>Espacios peatonales de conexión, calles peatonales, y aceras a lo largo de la calzada. Paradas de autobús con zonas de espera. Áreas comerciales peatonales.</td>
<td>CE1A</td>
</tr>
<tr>
<td></td>
<td>Flujo de tráfico de peatones</td>
<td>CE2</td>
</tr>
<tr>
<td></td>
<td>Alto...</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Normal...</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S4</td>
</tr>
<tr>
<td>E2</td>
<td>Zonas comerciales con acceso restringido y uso prioritario de peatones.</td>
<td>CE1A</td>
</tr>
<tr>
<td></td>
<td>Flujo de tráfico de ciclistas</td>
<td>CE2</td>
</tr>
<tr>
<td></td>
<td>Alto...</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Normal...</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S4</td>
</tr>
</tbody>
</table>

De los requisitos fotométricos establecidos para una clase de alumbrado, son de obligatorio cumplimiento los niveles de luminancia o de iluminancia media de referencia, que no podrán ser
superados en más de un 20%. También es obligatorio el cumplimiento de los niveles de uniformidad mínima, mientras que el resto de requisitos fotométricos, por ejemplo, valor mínimo de iluminancia en un punto, deslumbramiento e iluminación de alrededores, descritos para cada clase de alumbrado, son valores de referencia pero no exigidos, que deberán considerarse para distintos tipos de instalaciones.

Tabla 17. Requisitos fotométricos obligatorios para las diferentes clases de alumbrado

<table>
<thead>
<tr>
<th>Clase de alumbrado</th>
<th>Iluminancia horizontal en el área de la calzada(^8)</th>
<th>Iluminancia media (lux)</th>
<th>Uniformidad global (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME1</td>
<td></td>
<td>30 (2 cd/m(^2))</td>
<td>0,40</td>
</tr>
<tr>
<td>ME2</td>
<td></td>
<td>22,5 (1,5 cd/m(^2))</td>
<td>0,40</td>
</tr>
<tr>
<td>ME3a</td>
<td></td>
<td>15 (1 cd/m(^2))</td>
<td>0,40</td>
</tr>
<tr>
<td>ME3b</td>
<td></td>
<td>15 (1 cd/m(^2))</td>
<td>0,40</td>
</tr>
<tr>
<td>ME3c</td>
<td></td>
<td>15 (1 cd/m(^2))</td>
<td>0,40</td>
</tr>
<tr>
<td>ME4a</td>
<td></td>
<td>11,25 (0,75 cd/m(^2))</td>
<td>0,40</td>
</tr>
<tr>
<td>ME4b</td>
<td></td>
<td>11,25 (0,75 cd/m(^2))</td>
<td>0,40</td>
</tr>
<tr>
<td>ME5</td>
<td></td>
<td>7,5 (0,50 cd/m(^2))</td>
<td>0,35</td>
</tr>
<tr>
<td>ME6</td>
<td></td>
<td>4,5 (0,30 cd/m(^2))</td>
<td>0,35</td>
</tr>
<tr>
<td>CE0</td>
<td></td>
<td>50</td>
<td>0,40</td>
</tr>
<tr>
<td>CE1</td>
<td></td>
<td>30</td>
<td>0,40</td>
</tr>
<tr>
<td>CE1A</td>
<td></td>
<td>25</td>
<td>0,40</td>
</tr>
<tr>
<td>CE2</td>
<td></td>
<td>20</td>
<td>0,40</td>
</tr>
<tr>
<td>CE3</td>
<td></td>
<td>15</td>
<td>0,40</td>
</tr>
<tr>
<td>CE4</td>
<td></td>
<td>10</td>
<td>0,40</td>
</tr>
<tr>
<td>CE5</td>
<td></td>
<td>7,5</td>
<td>0,40</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>7,5</td>
<td>1,5</td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

En la siguiente tabla se muestra el número de puntos de luz que se encuentran en vías según la clasificación establecida en la normativa vigente en el municipio de Caudete:

\(^8\) Estos niveles son los que se deben conseguir con el alumbrado funcionando a nivel máximo. La actuación de sistemas de regulación provocará una disminución que podrá llegar hasta el 50% de los niveles normativos. Los valores de luminancia dados pueden convertirse en valores de iluminancia, multiplicando los primeros por el coeficiente R (según C.I.E.) del pavimento utilizado, tomando un valor de 15 cuando éste no se conozca.
Tabla 18. Número de puntos de luz en cada tipo de vía.

<table>
<thead>
<tr>
<th>Tipo de vía</th>
<th>Clase de alumbrado</th>
<th>Número de luminarias</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3-D4</td>
<td>S1</td>
<td>300</td>
<td>10,8%</td>
</tr>
<tr>
<td>D3-D4</td>
<td>S2</td>
<td>192</td>
<td>6,9%</td>
</tr>
<tr>
<td>D3-D4</td>
<td>S3</td>
<td>1.042</td>
<td>37,6%</td>
</tr>
<tr>
<td>D3-D4</td>
<td>S4</td>
<td>745</td>
<td>26,9%</td>
</tr>
<tr>
<td>E1-E2</td>
<td>S1</td>
<td>27</td>
<td>1,0%</td>
</tr>
<tr>
<td>E1-E2</td>
<td>S2</td>
<td>141</td>
<td>5,1%</td>
</tr>
<tr>
<td>E1-E2</td>
<td>S3</td>
<td>53</td>
<td>1,9%</td>
</tr>
<tr>
<td>E1-E2</td>
<td>S4</td>
<td>271</td>
<td>9,8%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2.771</td>
<td>100%</td>
</tr>
</tbody>
</table>

Para determinar el nivel de iluminación que existe en cada tipo de vía se han realizado luxometrías en todas las calles de Caudete donde ha sido posible realizar mediciones.

9 Estas luxometrías se entregan junto con la auditoría energética.
3. PROPUESTAS DE MEJORA

Se han evaluado distintas propuestas de mejora con el fin de corregir las deficiencias encontradas y reducir el consumo energético de las instalaciones existentes manteniendo unos niveles de servicio óptimos y adecuados a la normativa aplicable. Las propuestas de mejora se basan en la reducción de alguno de los factores que afectan al consumo energético:

\[
\text{Consumo energético (kWh) } = \text{Potencia (kW) } \times \text{Tiempo (horas)}
\]

Es decir, reducción de potencia eléctrica demandada, ya sea por disminución de la potencia nominal o por aumento de la regulación, o reducción del tiempo de funcionamiento mediante cambios en los sistemas de encendido. La combinación de propuestas de reducción de potencia con otras de reducción de tiempo provoca que el ahorro total obtenido no sea la suma aritmética de los ahorros de las propuestas evaluadas de forma individual.

El ahorro económico es consecuencia del ahorro energético así como de otros ahorros económicos complementarios en la gestión y explotación de la instalación de alumbrado público.

- El ahorro energético se ha calculado mediante el consumo evitado por el término de energía promedio optimizado a fecha actual (sin IVA) del suministro eléctrico de cada centro de mando.
- El ahorro por reposición se ha calculado mediante la diferencia en el coste anual de reposición de las lámparas al final de su vida útil programada, así como un coste de instalación o mano de obra.
- La duración del periodo de referencia es de 10 años. Este periodo es el que se ha utilizado para calcular los costes de reposición futuros anuales, así como para el prorrato de inversiones más allá del primer año (por ejemplo, las asociadas con el sistema de telegestión).
- No se han tenido en cuenta los posibles ahorros por mejora del factor de potencia de las nuevas luminarias o equipos auxiliares, ni el ahorro en el término de potencia por reducción de potencia instalada.

La inversión se ha calculado a partir de los precios unitarios (sin IVA) de los nuevos elementos (luminarias, lámparas, etc.) incluyendo un coste de instalación o mano de obra. El periodo de retorno simple de cada inversión no tiene en cuenta los posibles incrementos en los precios eléctricos o en el conjunto de precios de bienes y servicios consumidos (IPC).
3.1. ACTUACIONES EN CENTROS DE MANDO

Como se ha indicado anteriormente, en caso de realizar modificaciones importantes en la instalación de alumbrado (ya sea luminarias, líneas u otros elementos), los centros de mando deberán ser inspeccionados de acuerdo a la normativa vigente, por lo que podrían requerir de actuaciones de adecuación. Por lo tanto, estas propuestas de actuación en centros de mando no generan ningún tipo de ahorro energético o económico, pero son necesarias para el cumplimiento de la normativa y la perfecta explotación de la instalación de alumbrado público.

A partir de la cantidad de deficiencias encontradas y su gravedad, se han agrupado las actuaciones en los centros de mando en cuatro categorías:

- Renovación: Sustitución completa del centro de mando por otro nuevo de acuerdo a la normativa vigente.
- Adaptación: Es necesario la subsanación de deficiencias importantes. No se requiere el cambio completo del centro de mando, por lo que se pueden aprovechar elementos existentes.
- Actuación leve: Es necesario la subsanación de pocas deficiencias o de poca importancia. Es posible aprovechar una parte importante de los elementos actualmente instalados.
- Ninguna actuación: El centro de mando analizado no presenta deficiencias en los aspectos considerados, por lo que no es necesario ejecutar ningún tipo de inversión sobre el mismo.

En la siguiente tabla se muestran las unidades y porcentaje sobre el total de las actuaciones requeridas en los centros de mando:

<table>
<thead>
<tr>
<th>Tipo de actuación</th>
<th>Número de centros de mando</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renovación</td>
<td>5</td>
<td>12%</td>
</tr>
<tr>
<td>Adaptación</td>
<td>13</td>
<td>31%</td>
</tr>
<tr>
<td>Actuación leve</td>
<td>24</td>
<td>57%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>42</td>
<td>100%</td>
</tr>
</tbody>
</table>

3.2. SUSTITUCIÓN DE LOS SISTEMAS DE ENCENDIDO E INSTALACIÓN DE UN SISTEMA DE TELEGESTIÓN

Actualmente existen sistemas de telegestión capaces de controlar el encendido de alumbrado basándose en el funcionamiento de un reloj astronómico. Además del control de encendido y apagado, la instalación de un sistema de telegestión presenta múltiples ventajas que los hacen especialmente interesantes, incluso necesarios en el caso de empresas de servicios energéticos (ESE):
Tabla 20. Características de los sistemas de telecontrol.

<table>
<thead>
<tr>
<th>SISTEMA DE TELECONTROL</th>
<th>POR CUADRO DE MANDO</th>
<th>POR PUNTO DE LUZ</th>
</tr>
</thead>
</table>
| **DEFINICIÓN** | ▪ De forma remota, se puede apagar o encender las líneas que dependen de cada cuadro de mando.
 ▪ De la misma manera, se recibe información puntual sobre los consumos diarios de los elementos conectados a dichos cuadros de mando y nos informa sobre cualquier avería que ocurra en dichas líneas.
 ▪ El sistema se integra fácilmente en las instalaciones existentes sin necesidad de cambiar el cableado. | ▪ Este sistema permite encender y apagar los puntos de luz individualmente en cualquier momento, o bien ajustarlos al nivel de luz deseado en base a unos calendarios de programación o mediante una orden concreta en tiempo real. Se pueden controlar las horas de funcionamiento y el estado de cada lámpara, e informar de los fallos a nivel de punto de luz indicando la posición exacta del fallo.
 ▪ No es necesario hacer modificaciones en el cableado existente pero en algunos casos hay que actuar también a nivel de cuadro eléctrico. |
| **VENTAJAS** | ▪ El costo de la solución es más reducido. | ▪ Fácil de instalar y mantener.
 ▪ Control total sobre el alumbrado público.
 ▪ Contribuye a la reducción de los costes de mantenimiento.
 ▪ Permite el desarrollo de nuevos conceptos de Smart City. |
| **INCONVENIENTES** | ▪ No permite controlar el punto de luz “on-demand”
 ▪ No permite obtener información del estado del punto de luz.
 ▪ No permite desarrollar conceptos Smart City | ▪ El costo de la solución es más alto. |

3.3. SUSTITUCIÓN DE LUMINARIAS POR TECNOLOGÍA LED

Una luminaria puede presentar un rendimiento bajo debido a dos causas principales:
- Una gran cantidad de flujo luminoso es dirigido hacia el hemisferio superior (FHS\(^{10}\)), por lo que no se aprovecha para la iluminación vial
- El sistema óptico es inexistente o presenta pérdidas importantes, a pesar de que el FHS no es elevado, por lo que el rendimiento global (LOR\(^{11}\)) de la luminaria es bajo

\(^{10}\) FHS: Flujo hemisférico superior
\(^{11}\) LOR: Light Output Ratio, rendimiento de la luminaria
Como se ha indicado anteriormente, la tecnología LED presenta unas prestaciones en cuanto a rendimiento luz/electricidad y aprovechamiento de la luz en el espacio a iluminar, que la hacen especialmente interesante en aquellos casos en los que la luminaria actual es ineficiente y presenta un aprovechamiento óptico bajo. Además, si la lámpara utilizada presenta una eficacia luminosa baja (como por ejemplo las de vapor de mercurio) la sustitución es todavía más beneficiosa.

Ilustración 9. Comparación de tecnología de descarga (izqda.) y tecnología LED (dcha.) Fuente: Philips

Por otra parte, la utilización de tecnología LED para alumbrado público supone un aumento en la calidad de la iluminación y la eficacia visual, gracias a la mejor reproducción cromática y la utilización de luz blanca en un mayor rango de temperaturas de color.

Por último, la tecnología LED presenta, por término medio, una mayor vida útil que las tecnologías de descarga, lo que supone una disminución en los costes de explotación debido al menor número de operaciones de reposición necesarias en el periodo de referencia.

A continuación se resumen los criterios de sustitución de luminarias por tecnología LED:

36 de 46
<table>
<thead>
<tr>
<th>Luminaria actual</th>
<th>Luminaria propuesta LED<sup>12</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Artística Villa sin reflector</td>
<td></td>
</tr>
<tr>
<td>Artística Fernandina sin reflector</td>
<td></td>
</tr>
<tr>
<td>Globo sin reflector</td>
<td></td>
</tr>
<tr>
<td>Globo sin reflector</td>
<td></td>
</tr>
</tbody>
</table>

¹² Foto orientativa. En algunos casos podría ser suficiente con cambiar sólo el bloque óptico, que se adaptaría al tipo de luminaria existente.
<table>
<thead>
<tr>
<th>Luminaria actual</th>
<th>Luminaria propuesta LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peatonal cono invertido</td>
<td></td>
</tr>
<tr>
<td>Viaria sin cierre (Tipo III)</td>
<td></td>
</tr>
<tr>
<td>Viaria con cierre de policarbonato-metacrilato (Tipo II)</td>
<td></td>
</tr>
</tbody>
</table>

En la siguiente tabla se desglosa el número de luminarias a cambiar de cada tipo, mostrado en la tabla anterior:

Tabla 22. Número de luminarias a sustituir y propuesta equivalente LED

<table>
<thead>
<tr>
<th>Luminaria actual</th>
<th>Luminaria propuesta</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artística sin reflector tipo Fernandina</td>
<td>Bloque óptico LED</td>
<td>48</td>
</tr>
<tr>
<td>Viaria sin cierre (tipo III)</td>
<td>Viaria LED</td>
<td>223</td>
</tr>
<tr>
<td>Artística sin reflector tipo Villa</td>
<td>Bloque óptico LED</td>
<td>104</td>
</tr>
<tr>
<td>Peatonal cono invertido</td>
<td>Peatonal LED</td>
<td>92</td>
</tr>
<tr>
<td>Viaria cierre policarbonato-metacrilato (tipo II)</td>
<td>Viaria LED</td>
<td>937</td>
</tr>
<tr>
<td>Globo sin reflector</td>
<td>Peatonal LED</td>
<td>141</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.545</td>
<td></td>
</tr>
</tbody>
</table>
3.4. SUSTITUCIÓN DE LÁMPARAS POR OTRAS MÁS EFICIENTES

La eficacia luminosa de una lámpara se define como la cantidad de luz emitida (lumen, lm) por la energía eléctrica consumida (vatios, W). Cuanto mayor eficacia, menor será el consumo eléctrico para un mismo flujo luminoso.

![Diagrama de eficacia luminosa de distintas lámparas](image)

Gráfico 7. Comparación de la eficacia luminosa de distintas lámparas

Por este motivo, se propone la sustitución de las lámparas de vapor de sodio y vapor de mercurio en aquellos puntos de luz donde no se haya propuesto la sustitución de la luminaria indicada en el apartado anterior.

Se ha tenido en cuenta la mayor eficacia luminosa de la nueva lámpara, así como la adecuación de los niveles de iluminación de acuerdo a la clase de alumbrado asignada al área iluminada.

En los casos donde no se propone un cambio de luminaria se ha optado por la opción de cambio a halogenuro metálico. De esta forma se deja el color de luz en Caudete de forma homogénea.

<table>
<thead>
<tr>
<th>Tabla 23. Equivalencia en la sustitución de lámparas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lámpara actual</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar 150 W</td>
</tr>
<tr>
<td>Halogenuro metálico quemador cerámico 150 W</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar 100 W</td>
</tr>
<tr>
<td>Vapor mercurio 250 W</td>
</tr>
<tr>
<td>Halogenuro metálico quemador cerámico 100 W</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar 70 W</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar 250 W</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar 150 W</td>
</tr>
<tr>
<td>Vapor mercurio 125 W</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar 100 W</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar 70 W</td>
</tr>
<tr>
<td>Incandescente tipo PAR 120 W</td>
</tr>
</tbody>
</table>
3.5. INSTALACIÓN DE EQUIPOS ELECTRÓNICOS REGULABLES

Una de las mayores posibilidades de ahorro en las instalaciones de alumbrado público es la instalación de sistemas de regulación de potencia. Además, estos sistemas son obligatorios en todas las instalaciones con potencia instalada superior a 5 kW según la normativa vigente.

Los equipos electrónicos regulables programables permiten establecer hasta 5 niveles de flujo y 5 periodos de tiempo a lo largo de la noche, consiguiendo un ahorro de energía distinto dependiendo de la curva de regulación escogida.

En la siguiente gráfica se muestra un perfil horario tipo de encendido, apagado y regulación en la que se puede observar el funcionamiento del equipo.

![Gráfico 8. Perfil tipo de regulación de los balastos electrónicos regulables programables](image)

Se propone la instalación de equipos electrónicos de regulación en todos aquellos puntos de luz en los que se realice algún cambio descrito anteriormente (luminarias o lámparas), así como la sustitución de los equipos auxiliares en el resto de puntos de luz donde actualmente no se dispone de un sistema de regulación en funcionamiento. Se tienen por lo tanto las siguientes situaciones:

- Puntos de luz donde se propone la sustitución de las luminarias por otras de tecnología LED. En este caso todos los conjuntos luminaria-bloque óptico propuestos disponen de...
equipos electrónicos regulables automáticos, salvo en aquellos casos donde existe regulador en cabecera funcionando, en cuyo caso se aprovecharía este equipo como si fuera una línea de mando con la que controlar la conmutación entre nivel máximo y nivel reducido, de forma remota o programada mediante el sistema de telegestión que se ha propuesto en cada centro de mando.

- Puntos de luz donde no se propone la sustitución de la luminaria pero sí la sustitución de la lámpara (ya sea por otras de tecnología más eficiente, o por igual tecnología pero de menor potencia (adecuación de los niveles de iluminación), según se describe en los apartados anteriores). En este caso se propone la sustitución de los equipos auxiliares actuales por otros de tipo electrónico con regulación automática preprogramada.

- Puntos de luz donde no se propone sustitución de luminaria ni de lámpara, y que actualmente no disponen de regulación en cabecera.

Los balastos electrónicos para lámparas de alta intensidad de descarga, constituyen un sistema de alimentación sustitutivo de la instalación convencional compuesta por reactancia electromagnética, arrancador y condensador para corregir el factor de potencia. Las principales características de los balastos electrónicos son:

- Mayor rendimiento total del circuito y menor consumo. Dimensiones y peso reducidos.
- Estabilidad de la potencia de la lámpara ante variaciones de red. Estabilidad de color y flujo luminoso.
- Mayor vida de la lámpara, lo que genera menores costes de reposición anuales. Sistemas de protección incluidos en el mismo equipo.
- Reducción del efecto estroboscópico (parpadeo) y funcionamiento silencioso.
- Mayor posibilidad de ahorro energético en comparación con la regulación por tensión en cabecera.

<table>
<thead>
<tr>
<th>Tabla 24. Equivalencia en la sustitución de lámparas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulación actual</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Reactancia electromagnética sin regulación</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reactancia electromagnética sin regulación</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
3.6. RESUMEN DE PROPUESTAS

La siguiente tabla muestra el resumen de las medidas de ahorro propuestas y los costes de instalación. Las distintas actuaciones se han agrupado en función de si afectan a los puntos de luz o a los centros de mando. Las inversiones en puntos de luz se encuentran desglosadas por coste de materiales y de instalación.

Las propuestas se presentan en función del tipo de elementos actuales y el tipo de actuación, indicando los costes, retornos, etc. de cada una de ellas. La propuesta de cambio de puntos de luz se ha desglosado en la propuesta de sustitución de luminarias a otras con tecnología LED. Las propuestas en centros de mando incluyen la adecuación de los cuadros eléctricos al reglamento y la instalación de un sistema de telegestión centralizado.

La implantación conjunta de las propuestas estudiadas permitiría un ahorro energético del 59,7% sobre el consumo actual de la instalación de alumbrado público. La inversión estimada necesaria para conseguir este ahorro es de 688.029 euros, lo que generaría un ahorro económico anual de 108.868 euros, por lo que se recuperaría en 6,3 años si la electricidad se mantuviera al mismo precio que en la actualidad (periodo de retorno simple).

En el apartado de adecuación a la normativa, se puede ver que el ahorro energético es negativo, esto es debido a las luminarias que están apagadas. En esta propuesta se considerará que en un futuro van a estar encendidas, por esa razón se incrementa el consumo con respecto a la situación actual y no hay ahorros.
Tabla 25. Resumen de propuestas en alumbrado público.

<table>
<thead>
<tr>
<th>Tipo de actuación</th>
<th>Unidades propuestas</th>
<th>Ahorro energético</th>
<th>Ahorro por reposición (€/año)</th>
<th>Ahorro Total (€/año)</th>
<th>Inversión (€)</th>
<th>PRS (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>Propuesto</td>
<td>(kWh/año)</td>
<td>(%)</td>
<td>(€/año)</td>
<td>Material</td>
<td>Instalación</td>
</tr>
<tr>
<td>Ahorro energético</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPUESTAS EN PUNTOS DE LUZ

TECNOLOGÍA LED: SUSTITUCIÓN LUMINARIAS

- **Artística sin reflector tipo Fernandina**: Bloque óptico LED 48 28.522 88,6% 10.268 2.860 687 3.547 19.200 2.400 21.600 6,1
- **Viaria sin cierre (tipo III)**: Viaria LED 223 94.774 84,6% 34.119 8.917 4.319 13.236 55.750 11.150 66.900 5,1
- **Artística sin reflector tipo Villa**: Bloque óptico LED 104 49.668 88,1% 17.881 4.826 1.497 6.323 26.000 5.200 31.200 4,9
- **Peatonal cono invertido**: Peatonal LED 92 20.926 80,7% 7.534 1.951 1.209 3.159 27.600 4.600 32.200 10,2
- **Viaria cierre policarbonato-metacrilato (tipo II)**: Viaria LED 937 355.502 79,9% 127.981 33.481 12.602 46.083 235.960 46.850 282.810 6,1
- **Globo sin reflector**: Peatonal LED 141 45.818 86,3% 16.495 4.442 4.442 1.910 42.228 7.050 49.278 7,8

SUBTOTAL SUSTITUCIÓN LUMINARIAS: 1.545 595.211 42,7% 214.276 56.476 22.223 78.700 406.738 77.250 483.988 6,1

TECNOLOGÍA DESCARGA: SUSTITUCIÓN LÁMPARAS Y EQUIPOS

- **Vapor sodio alta presión estándar**: Halogenuro metálico quemador cerámico + Equipo electrónico regulable con telegestión centralizada 225 47.574 38,3% 17.127 4.374 1.624 5.998 14.434 11.250 25.684 4,3
- **Halogenuro metálico quemador cerámico**: Halogenuro metálico quemador cerámico + Equipo electrónico regulable con telegestión centralizada 300 95.488 50,0% 34.376 8.349 2.400 10.749 19.018 15.000 34.018 3,2
- **Vapor mercurio**: Halogenuro metálico quemador cerámico + Equipo electrónico regulable en luminarias con telegestión punto a punto 16 7.245 40,8% 2.608 672 121 793 1.378 800 2.178 2,7
- **Halogenuro metálico quemador cerámico**: Halogenuro metálico quemador cerámico + Equipo electrónico regulable en luminarias con telegestión punto a punto 69 20.191 52,4% 7.269 1.844 552 2.396 4.374 3.450 7.824 3,3
<table>
<thead>
<tr>
<th>Tipo de actuación</th>
<th>Unidades propuestas</th>
<th>Ahorro energético</th>
<th>Inversión ($)</th>
<th>PRS (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(kWh/año)</td>
<td>(%)</td>
<td>(CO₂/año)</td>
</tr>
<tr>
<td>Vapor mercurio</td>
<td>Halogenuro metálico quemador cerámico + Equipo electrónico regulable con telegestión centralizada</td>
<td>117</td>
<td>9.525</td>
<td>20,4%</td>
</tr>
<tr>
<td>Incandescente tipo PAR</td>
<td>Halogenuro metálico quemador cerámico + Equipo electrónico regulable con telegestión centralizada</td>
<td>8</td>
<td>-2.544</td>
<td>-81,56%</td>
</tr>
<tr>
<td>Vapor sodio alta presión estándar</td>
<td>Halogenuro metálico quemador cerámico + Equipo electrónico regulable en luminarias con telegestión punto a punto</td>
<td>205</td>
<td>36.246</td>
<td>31,6%</td>
</tr>
<tr>
<td>SUBTOTAL SUSTITUCIÓN LÁMPARAS Y EQUIPOS</td>
<td>940</td>
<td>213.724</td>
<td>15,3%</td>
<td>76.941</td>
</tr>
<tr>
<td>TECNLOGÍA DESCARGA: SUSTITUCIÓN SÓLO EQUIPOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactancia electromagnética sin regulación</td>
<td>Equipo electrónico regulable en luminarias con telegestión punto a punto</td>
<td>141</td>
<td>25.549</td>
<td>29,0%</td>
</tr>
<tr>
<td>Reactancia electromagnética sin regulación</td>
<td>Equipo electrónico regulable con telegestión centralizada</td>
<td>109</td>
<td>-4.900</td>
<td>-11,7%</td>
</tr>
<tr>
<td>SUBTOTAL SUSTITUCIÓN SÓLO EQUIPOS</td>
<td>250</td>
<td>20.648</td>
<td>1,5%</td>
<td>7.433</td>
</tr>
<tr>
<td>ADECUACIÓN A LA NORMATIVA: ENCENDIDO DE LUMINARIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peatonal cilíndrica</td>
<td>-</td>
<td>12</td>
<td>-677</td>
<td>-</td>
</tr>
<tr>
<td>Empotrada en suelo</td>
<td>-</td>
<td>24</td>
<td>-2.078</td>
<td>-</td>
</tr>
<tr>
<td>SUBTOTAL ADECUACIÓN A LA NORMATIVA</td>
<td>36</td>
<td>-2.755</td>
<td>-</td>
<td>-992</td>
</tr>
<tr>
<td>PROPUESTAS EN CENTROS DE MANDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustitución del sistema de encendido e instalación de sistemas de telegestión central</td>
<td>-</td>
<td>30</td>
<td>5.577</td>
<td>0,4%</td>
</tr>
<tr>
<td>Actuaciones de cumplimiento REBT en los centros de mando</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SUBTOTAL CENTROS DE MANDO</td>
<td>-</td>
<td>-</td>
<td>5.577</td>
<td>0,4%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>832.406</td>
<td>59,7%</td>
<td>299.666</td>
<td>78.066</td>
</tr>
</tbody>
</table>
3.7. RESULTADOS GLOBALES

3.7.1. CONSUMO Y COSTE ENERGÉTICO

La implantación conjunta de las propuestas recomendadas de ahorro en toda la instalación de alumbrado público de Caudete generaría los siguientes resultados, comparados con la situación actual:

<table>
<thead>
<tr>
<th>RESULTADOS GLOBALES</th>
<th>Unidades</th>
<th>Situación actual</th>
<th>Situación futura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de puntos de luz</td>
<td>[-]</td>
<td>2.771</td>
<td>2.771</td>
</tr>
<tr>
<td>Potencia instalada</td>
<td>[kW]</td>
<td>453</td>
<td>200</td>
</tr>
<tr>
<td>Tiempo de funcionamiento</td>
<td>[horas / año]</td>
<td>4.122</td>
<td>4.317</td>
</tr>
<tr>
<td>Consumo energético anual</td>
<td>[kWh / año]</td>
<td>1.394.258</td>
<td>567.429</td>
</tr>
<tr>
<td>Coste energético anual</td>
<td>[€ / año]</td>
<td>130.662</td>
<td>53.102</td>
</tr>
<tr>
<td>Emisiones de CO2</td>
<td>[kg/año]</td>
<td>501.933</td>
<td>204.274</td>
</tr>
</tbody>
</table>

Con la ejecución y puesta en marcha de las propuestas de mejora estudiadas, la potencia instalada disminuiría en un 56% respecto a la situación actual. Desde el punto de vista medioambiental, se conseguiría una reducción de emisiones de dióxido de carbono del 59%, lo que equivaldría a las emisiones generadas por el consumo eléctrico de 327 hogares españoles durante un año completo.13 14

Respecto al desempeño energético, el consumo de energía eléctrica por habitante y año se reduciría hasta 55 kWh/hab año. La relación entre consumo energético y potencia instalada, indicador de la ineficacia de los sistemas de regulación instalados, disminuiría un 8%. Por último, la potencia media por punto de luz bajaría hasta 72 W.

<table>
<thead>
<tr>
<th>CONSUMO Y COSTE ENERGÉTICO</th>
<th>Unidades</th>
<th>Situación actual</th>
<th>Situación futura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo de energía eléctrica anual por habitante</td>
<td>kWh/hab-año</td>
<td>135</td>
<td>55</td>
</tr>
<tr>
<td>Relación consumo energético / potencia instalada</td>
<td>kWh/kW</td>
<td>3.080</td>
<td>2.837</td>
</tr>
<tr>
<td>Potencia media por luminaria</td>
<td>W/Lum</td>
<td>163</td>
<td>72</td>
</tr>
</tbody>
</table>

13 Fuente: CNE 2010
14 Emisiones de CO2 procedentes del sector residencial. MAGRAMA. 910 kg/CO2/hogar año en 2011
3.7.2. EFICIENCIA ENERGÉTICA

En relación a la eficiencia energética, la instalación generaría los siguientes resultados comparados con la situación actual, desglosados según los tipos de alumbrado que se contemplan en la normativa vigente:\footnote{Reglamento de Eficiencia Energética en Instalaciones de Alumbrado Exterior, Instrucción Técnica Complementaria EA-01: Eficiencia Energética. Apartados 2 y 3.}

- Alumbrado ambiental: Corresponde al ejecutado generalmente sobre soportes de baja altura (3 – 5 m) en áreas urbanas, en vías clasificadas como tipos C, D y E.

Tabla 28. Eficiencia energética del alumbrado público

<table>
<thead>
<tr>
<th>EFICIENCIA ENERGÉTICA</th>
<th>Unidades</th>
<th>Valor actual</th>
<th>Valor futuro</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMBRADO AMBIENTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia instalada [kW]</td>
<td></td>
<td>452,6</td>
<td>200,0</td>
</tr>
<tr>
<td>Iluminancia media [lux]</td>
<td>[lux]</td>
<td>16,1</td>
<td>12,9</td>
</tr>
<tr>
<td>Superficie iluminada [m²]</td>
<td>[m²]</td>
<td>281.441</td>
<td>281.441</td>
</tr>
<tr>
<td>Eficiencia energética [lux·m²/W]</td>
<td>[lux·m²/W]</td>
<td>11,9</td>
<td>26,0</td>
</tr>
</tbody>
</table>